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transport in GaAs at high electric fields 
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55,21071 Hamburg, Germany 
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Abstract. We theoretically investigate the inEuence of electron-dectron interaction and the Pauli 
exclusion principle on electron transport in highly doped homogeneous n-GaAs. The electron- 
electron interaction potential is split up into a long- and a short-range part. Electmn-electron 
interaction due to the long-range part is treated as inelastic scattering at coupled plasmon- 
phonon oscillations; electron scatrering p m e r  due to the short-range part are described as 
elastical collisions of identical particles. The minimal wavelengtlu; of coupled plasmon-phonon 
oscillations are given by lower limits. Velocity-field characteristics are wmputed for field 
strengths of 0 c E < 30 kV cm-’ and electron concentrations of 10l6 c K 3  and cm-’. 
A small influence of electron-electron interaction and he Pauli exclusion principle is found at 
n = IOLs cm-’. The large dip in mobility in GaAs at n = 1OIy cm-’ is shown to be caused by 
the exclusion principle. 

1. Introduction 

Based on an approach of Bohm and Pines [l], the effect of electron-electron interaction 
on electron transpod in semiconductors can be studied by solving the Boltz~nann transport 
equation using appropriate   scattering rates (e.g. [2-4]). These scattering rates account for 
the energy conserving collision of,electrons as well as the interaction of electrons with 
collective excitations of the electronic electric field. Transition probabilities are computed 
by time dependent perturbation theory. Scattering rates have also been evaluated using 
Green functions [5]. Recently, the two approaches have been compared [4], and good 
agreement has been found. Further work not based on the random phase approximation [I] 
and the statistical approach to the Pauli principle [3] may keep closer to the Schrodmger 
equation and adopt ideas covered e.g. in [6] and [7]. 

The long-range part of the electron-electron interaction has also been treated in a purely 
classical manner [SI. The electrons are considered to be point charges. The interaction is 
accounted for by solving the equations for the motion of point charges in the resulting 
electronic field. In [SI it is shown that the results obtained with this classical molecular 
dynamics approach differ from the results obtained using the quantum mechanical interaction 
of electrons with screened potentials and neglecting plasmons. In this paper, we take into 
account the long-range part of the interaction using the plasmon concept, thus neglecting 
charge fluctuations. To onr knowledge, it is at present hard to say whether a classical 
description of electron motion using the concept of point charges is closer to reality than 
a quantum mechanical description accounting for plasmons but neglecting the influence of 
charge fluctuations on electron motion. We note, however, that it is very difficult to reconcile 
the plasmon concept with the occurrence of space dependent electron charge distributions, 
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which are also caused by the long-range part of the electron potential. In principle it is 
possible to construct coherent plasmon states with a non-vanishing expectation value of the 
resulting electric field [9], thus leading to space dependent charge distributions caused by 
plasmons. 

However, the aim of this paper is not to go beyond the approach based on 111. Neither 
do we claim to have solved the problem of simultaneous occurrence of plasmons and charge 
fluctuations. However, it is not useless to perform an analysis that keeps as close as possible 
to the basic assumptions of [l]. To our knowledge all investigations of the influence of 
scattering of electrons at collective electronic excitations introduce additional assumptions to 
obtain a value for the minimum wavelength of these oscillations. According to [l], the cut- 
off value can be identified with the minimum wavelength at which a zero of the electronic 
part of the dielecfh function occurS. Hence, the wavelength depends on the electron 
distribution function. In dynamically determining the minimum value of the wavelength by 
analysis of the dielectric function, we find that the influence of electron-plasmon scattering 
on electronic transport is much lower than predicted in [4]. For completeness, we also take 
into account the coupling of plasmons to polar optical phonons as described in [9]. To sum 
up, we shall find that plasmons have a very small influence on electron transport, justifying 
their neglect. ' 

The impact of the exclusion principle on the scattering rates is taken into account by 
using a rejection technique based on the actual electron distribution [3]. We note that at high 
electric Belds rejection techniques based on Fermi distribution functions clearly overestimate 
the impact of the Pauli principle. 

To separate the influence of each of the effects considered, they are investigated 
successively. Insofar as our numerical methods deviate from methods applied elsewhere, 
they are explained in detail. Velocity-field characteristics including all effects are shown. 
Finally, we investigate the influence of the processes considered on the mobility. 

2. The simulation model 

The Monte Carlo model used here to simulate electron transport is described in [lo]. The 
detailed formulas for most of the scattering processes can be found in [l I]. Any deviations 
from these expressions are derived in [9] and in the present paper. Our model differs from 
the previously mentioned ones in the fact that the dependence of several parameters of the 
scattering rates on the electron distribution function is taken into account. 

These parameters are the ThomasFenni screening length, the plasma frequency, and 
the cut-off values of the wave numbers of the plasmon-phonon oscillations. While the 
latter dependence is discussed in [9] and in subsection 5.1, we now generalize the usual 
expressions for the screening length and the plasma frequency to the case of a many-valley 
semiconductor. We derive the screening length following [12] and are led to 

if the electrons in all valleys are Boltzmann distributed, and 

if the electrons in valley 1 (T valley) are Fermi distributed. Here is the inverse of 
the screening length, e is the elementary charge, E, is the static permeability, k~ is the 
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Boltzmann constant, ni is the electron concentration in valley i, mf is the effective mass 
of an electron in valley i, Ti is the electron temperature in valley i, and A is the Planck 
constant. The index i denotes the r, L, and X valleys, respectively. The electrons in the L 
and X valleys are always Boltzmann distributed due to the fact that these valleys are only 
occupied at high electron temperatures. Since at high concentrations & c BB and at low 
concentrations BF z &, the screening length is determined from 

B = min@Bs,, PF). (2.3) 

A plot of B versus n (figure 1) for T = 300 K, all electrons being in the r valley, shows 
that PB and BF intersect at n Y 5 x IO" ~ m - ~ ,  which is near to the electron concentration 
where the Fermi energy shifts into the conduction band (figure 2). 
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Figure 1. The inverse of the screening length according 
to (23) vmus electron mncenmtion. 

Figure 2. The Fermi level at 300 K versus electron 
concentration. 

The electron temperature in valley i is determined by 

Here wij is the energy of the j th  electron in valley i, N; the number pf electrons in 
valley i, mf the effective mass in valley i, and U; the mean electron velocity in valley i. 
Equation (2.4) only holds for electrons that are Boltzmann distributed. 

The theory developed in 111 directly leads to the plasma frequency of a system of 
electrons having different effective masses. One arrives at 

91 is the plasma frequency and tm the relative dielectric constant including the polarization 
of the valence electrons. The meaning of the other variables is the same as above. 

The electron distribution in thermal equilibrium is taken to be a Fermi distribution. 
The number of free electrons and the number of ionized impurities are set equal in our 
calculations. 
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3. Eleetron-electron collisions 

3.1. Derivation of the scattering rafes 

Our description of electron-electron collisions is based on the semiclassical electron model, 
which implies that electrons can be described by wave packets with a finite extension 
smaller than the crystal volume. To simplify our calculations, the bands are treated as being 
parabolic. Also, the cell periodic part of the electron wave function is set to unity. We 
adopt the theory of scattering of identical particles presented e.g. in [13]. The Hamilton 
operator for the two electrons in the effective mass approximation is 

mf is the effective mass of electron i, Ai is the Laplace operator for electron i, and V is 
the interaction potential according to 

Equation (3.1) is transformed by introducing relative coordinates: 

We now suppose that the wave functions of the electrons overlap. Solutions then have the 
form 

(3.4) 

V is the volume of the electron wave function. We choose the z-axis to point in the direction 
of IC,.  If we want to obtain the total scattering rate of one of the two colliding electrons, 
we must divide the result obtained from (3.4) by two. Since electrons have a spin of 1. the 
colliding electrons form singlet or triplet states. We obtain for the differential cross section 
of unpolarized particles according to [13] 

P(T) = (1/V1'2)(ei~z + f(+)e'""/r). 

du/dQ = f(0)'+ f ( H  - 0)' - f (0)f(Z - 9. (3.5) 
f (0) is real in the first order of Born's approximation. The total cross section for one 
electron reads 

(3.6) 

and the scattering rate is given by 

A(k,) = (hk,/mV)otM. (3.7) 

We have in the first order of Bom's approximation 

(3.8) 
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t9 is the angle between ki and kp After some calculation, we arrive at 

A(&) = ( n e 4 ~ n / x s ~ ~ ~ ~ 3 ~ ) ( ~ / ( 4 k , Z  + fi2)fi2 - [I/s@(@ + p2)11n[(4q + fi2)/P1). 
(3.9) 

The second term included here is an interference term. Figure 3 shows the scattering rate 
with and without inclusion of this term versus relative electron wave number. Equation (3.9) 
only gives a rough estimate of the scattering rate since at relative energies occurring in 
the electron system considered the first Bom approximation is not sufficient A proper 
phase shift calculation to obtain A for scattering of electrons at ionized impurities has been 
performed in 1141. However, the corrections did not affect the calculated transport properties 
significantly at 300 K. We thus feel justified in using the rates obtained by (3.9) for the 
similar electron-electron scattering process. 

110 '~  S - ~ I  

1 -- - --__ 

0 2 4 6 8 '  
[IO' m-'I 

1 

Wave Number 
Fiwre 3. The scatteting rate for elastic electron-electron collisions versus relative wave number: 
n = -,interference term included; - - -. interference t- not incloded. 

3.2. Determination ofthe scattering partners 

In transport theory and device simulation, electrons are not considered to be wave packets 
spread over the entire crystal but to occupy a restricted volume (see, e.g., [IS, 161). The 
Coulomb force exerted by electrons and ionized impurities beyond the wave function volume 
is neglected here since we consider a homogeneous crystal having a charge distribution 
statistically equal to zero. In this approximation, electrons only interact by collisions. We 
then add a further simplification. Since we want to investigate transport properties of GaAs, 
which is homogeneous in a statistical sense, the electron distribution is not a function of 
position. Therefore. the collision partners can be selected from the electron ensemble by 
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random numbers, thus saving the time to determine the electron positions and to find the 
spatially nearest neighbours. If the electron volume is set to 

V = N / n  (3.10) 

with N a natural number and n the electron density, then N + 1 electrons on average are 
involved in a scattering process. If kl is the wave vector of the scattered electron and if 
(ki] are the wave vectors of the collision partners, the scattering rate is 

(3.11) 

Here interference due to scattering at different electrons is neglected. 

[17]: 
Let r be the total scattering rate of an electron in a Monte Carlo simulation procedure 

(3.12) 

M is the number of scattering mechanisms without electron-electron collisions, L the 
number of scattering partners, and rf is the fictitious scattering rate [17]. Our statistical 
approach requires that L is not a constant but is distributed around N (see (3.10)). We 
regard this as a minor effect and set L = N .  We found that simulation results hardly 
depend on the value of L, as shown in figure 4, where distribution functions calculated with 
different values of L are compared. 

A random number r(0 < r < I') determines the scattering process which actually takes 
place. If 

with 

O < k < L - l  

then the electron is scattered at the partner with wave vector kktl. Further random numbers 
determine the direction of the relative wave vectors k: after the scattering process has taken 
place. Finally ki after the scattering is given by 

(3.14) 

The wave vector of the scattering partner kktl is left unaltered due to the fact that its 
end of flight does not coincide with that of the electron with wave vector k1. This causes 
momentum and energy to be only statistically conserved in a simulation procedure. This 
will be discussed in detail in the following section. 

3.3. Simulation algorithm 

Expression (3.11) can only be evaluated if the momenta of all scattering partners at the 
moment of the collision are known. To fulfill this condition, we developed an adequate 
algorithm based on the standard procedure of ensemble Monte Carlo simulation (e.g. [171). 

The total simulation time is divided into equal intervals. Consider a given interval j 
with time borders 5 - 1 , ~ .  The scattering events i for electrons k at times 4.i are computed 

k{ = ki + m;(kl + kk+l)/(m; + mi+& 
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Figure 4. Cuts through distribution funclions at kL = 0, n = 1OIs ~ m - ~ ,  E = 8 kV cm-l: 
-, without elecuon-elecuan collisions: - - -. L = 1: . . . . . ., L = 5 ;  - . -. L = 20. 

for all electrons until tk.i-1 c 
flights in interval j until 

c tk.;. We now continue the simulation of the electron 
> tj or 

(3.15) 

The meaning of the symbols in (3.15) is the same as that in equation (3.13). No final state 
is determined if (3.15) holds. Finally, a fraction of the electrons has traversed the time 
interval j .  The electrons of the remaining fraction are then sorted according to the ends of 
their flights. 

The simulation is continued with the electron having the smallest time of flight. Since 
the momenta of all other electrons are known at this time, it can be decided whether a 
fictitious scattering or an electron-electron collision occurs. In the latter case, the scattering 
partner and the final state are determined as explained in subsection 3.2, and the flight is 
continued until the electron has traversed the interval or the flight is stopped again because 
condition (3.15) holds. Then the next of the sorted electrons is simulated. 

The procedure is repeated until tk.< > t j  holds for all electrons. We then proceed with 
the simulation of the electron flights in the next time interval. The algorithm guarantees 
that the energy is statistically conserved as shown in figure 5. ~ In this figure, results of 
a simulation neglecting band non-parabolicity are shown. The electrical field is switched 
on at i = 0 ps. If non-parabolicity is generally taken into account but neglected for 
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electron-electron collisions as required if the method described in section 3.2 is to be 
used, energy conservation during collisions does not strictly hold (figure 6). However, the 
relative impact of the collisions on the mean electron velocity remains nearly the same 
whether non-pambolicity is neglected or not. Hence the small error in the energy balance 
does not significantly change the results. 

0 1 2 3 4 5 
[PSI 

Time 
Figure 5. The kinetic energy loss by scattering even& at n = IOL8 cm-) and E = 10 kV em-'. 
ai = 0. -, mfal energy loss; - - -, loss by elechum-elemn collisions. 

The calculation of time-ordered collision events is very time consuming, and in the 
following a simplification is described. Before simulating electron flights in the interval 
j (see above), we compute all electron momenta at time "-1. Now the momenta of the 
scattering partners are taken from this momentum distribution, which does not change during 
the time interval. In the stationary case, there is no difference between the distribution at 
the interval border and the distribution at the moment of a scattering event. In the non- 
stationary case, a small error occurs, and the energy is not conserved on average. Since we 
only are interested in stationary results, we apply the simplified method in the following. 

3.4. The influence of electron-electron scattering on the distributionfunction 

The influence of collisions on the distribution function depends on the electron concentration 
and the electric field strength. We briefly discuss here the impact of collisions at E = 8 kV 
cm-I. 
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Figure 6. The kinetic energy loss by scattering events at n = 10" cm-' and E = 10 kV Em-'. 
uj # 0. -, totat energy loss; -- -, loss by electron-electron collisions. 

the intluence is negligible. At n = 10" electron-electron 
collisions significantly randomize the momenta of the electrons. This effect does not depend 
significantly on the value of L.  Figure 4 shows cuts through distribution functions for 
n = 10" kL = 0, and different values of L (1,5,20). The distribution function f is 
defined such that 

At n = lot6 

gives the total number of electrons. kT is the electron momentum perpendicular to the 
direction of the electric field, and kL is the momentum parallel to the field. Evidently, the 
deviations of the distribution functions for L = 1, 5,  and 20 at kL = 0 are a second-order 
effect. In order to reduce statistical fluctuations of the scattering rate (3.11), we set L = 5. 

3.5. The influence of electron-electron scattering on transport mean values 

Figures 7 and 8 show the stationary velocity-field characteristics for electron concentrations 
of n = IOt6 and n = 10'' ~ m - ~ ,  respectively, with and without inclusion of electron- 
electron collision processes. At n = 10l6 ~ m - ~ ,  the influence of this scattering process 
on transport properties is negligible. At n = lo'* cm-3, however, the stationary peak 
velocity is raised significantly. This effect also occurs if non-parabolicity is neglected, the 
energy loss by collisions being statistically exactly equal to zero. A more detailed analysis 
shows that the mean scattering angle increases with eleclmn concentration, while the mean 
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Figure 7. The stationary velocity-field chancteristic for n = 10l6 c n r 3 :  -, withour 
electron-electron collisions; - - -, collisions induded. 

scattering rate decreases. We also observe that at n = 10” cm-3 the scattering of electrons 
from the i? valley to the L valleys is retarded by collisions. 

4. The impact of the Pauli exclnsion principle on electron transport 

Figure 2 shows that the Fermi level shifts at n N 3 x 10” ~ m - ~  into the conduction band. 
Hence, the Pauli principle affects the distribution function, and some influence of this effect 
on electron transport is expected. 

4.1. The numerical procedure 

The simulation conditions cause the distribution function to have axial symmetry with 
respect to the direction of the electric field vector. We therefore define a two-dimensional 
distribution function depending on the longitudinal and transverse momenta of the electrons. 
fd(nAkL, nAkT, U) is by definition equal to the number of electrons in a group of equivalent 
valleys v with momentum 

satisfying 
k = (ki + 6)’” 

(m - 1)AkL < kL < mAkL (m > 1) 
(4.1) 

(n - 1)AkT < kT < nAkT. (n 2 1). 
n and m are natural numbers and AkTAkL is the area of a cell in the kT - kL plane. The 
momentum is referred to the centre of a valley. The maximum number M of electrons 
fulfilling the conditions (4.1) is 

M(nAkT, v )  = jU(N/4ir ) (2n - 1)Ak;AkL (n 2 1) (4.2) 
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Figure 8. The stationaJy velocity-field characteristic for n = 10" c d :  -, without 
electro-lmn collisions; - - -, collisions included. 

with j ,  the number of equivalent valleys of type U and N the number of electrons. The 
probability for any scattering process to end in a cell of the momentum space defined by 
(4.1) is proportional to 

If the final vector of the scattered electron has been determined in the Monte Carlo procedure, 
a random number r is chosen according to 

(4.3) 
If 

(4.4) 
the scattering process takes place, otherwise it is annulled and a new time of flight is 
determined, the electron continuing its flight with the momentum it had just before scattering. 

4.2. Numerical results 
Figure 9 shows the stationary electron velocity for n = 10" with and without taking 
into account the Pauli exclusion principle. Hectron-electron collisions are included. The 
relative rate of forbidden processes at the same concentration is shown in figure 10. 

At n = 10l6 CII-~, the exclusion principle can be neglected. Even at n = 10" C I I - ~  

the changes of the stationary mean electron velocity are small. As expected, the electron 
mobility at low field strengths is raised by the exclusion principle. Since the exclusion 
principle causes a lowering of the total scattering rate, a larger fraction of electrons gains 
sufficient energy to be potentially scattered from the r valley to the L valleys. Hence the 
maximum of the u(E)-curve is lowered, and u ( E )  decreases at lower field strengths than it 
does without inclusion of the exclusion principle. Finally at E = 30 kV cm-', the changes 
are near the statistical errors of our calculations. 

M(nAkT, U) - f d ( n a T ,  U). 

0 < r c M(nAkT, U). 

r > fd(nAkT. m AkL, U) 
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Figure 10. The relative rates of forbidden processes for 
" = 10'8 cm-3. 

Figure 11. Cut-off wave numbers for the lower mode 
at n = IOL6 -, branch 1; - - -, blanch 2. 

5. Interadion of electrons with coupled plasmon-phonons 

5.1. Scattering rates 

The derivation of the scattering rates for inelastic scattering of electrons at coupled plasmon- 
phonons has been presented in [9]. In the latter paper, we neglected the cell periodic part 
of the electron wave function for simplicity. This approximation is abandoned now to 
yield results comparable to those of other authors, who generally take overlap integrals into 
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account [lo, 171. The resulting lengthy expressions for the scattering rates are listed in the 
appendix. 

In the following, we briefly sketch the main results from [9]. Let i be the index of the 
branch of plasmon-phonons. We then can write for the scattering rate 

Indices a, e denote absorption and emission, respectively, fro; is the energy of a plasmon- 
phonon, and vi and wj are weighting factors for the phononic and plasmonic content of 
the mode. For n < 7 x 10’’ ~ m - ~ ,  vi > w; for the low-energy mode and vi c wi for 
the high-energy mode. The lower mode then has plasmonic, the upper mode phononic 
character. For n > 7 x IOl7 cn r3 ,  the character of the modes interchanges. 

The magnitude of AP1-Ph depends strongly on the value of the maximum of the oscillation 
wave number, qc. This value is determined according to 191 and is given by the point (m, qc) 
where the real part of the electronic part of the dielectric function E, and its first derivative 
are equal to zero. For wave numbers q > qc. no zeros of occur. For electrons that are 
Boltzmann distributed, E. is given approximately by 131 

with 

and 

The use of (5.2) leads to a small error for qc at electron concentrations of n = 10ls ~ m - ~  
in thermal equilibrium at T = 300 K since degeneracy effects affect the distribution 
function. In this case, (5.2) yields qc = 1.2 x 10’ m-l as compared to the exact result, 
qc = 1.4 x 10’ my’. As can be inferred from section 4, the inhence of degeneracy on 
the distribution function becomes smaller at higher field strengths, and we continue using 
(5.2) for the electron concentrations considered here. qc is determined numerically during a 
simulation and depends on the relative occupation of the valleys and the electron temperature 
in the valleys. 

Furthermore, we found in [91 another limit for qc, which for the low-energy mode was 
shown to he the stronger one. This value is obtained by determining the finite phonon- 
plasmon lifetime. The finite lifetime is a consequence of damping of an oscillation by 
energy loss and depends on the electron distribution function. 

A first approach to take damping into account is to neglect scattering of electrons at 
coupled plasmon-phonons of branch i if the lifetime of these excitations is shorter than 
the interaction time of time dependent perturbation theory. This eventually leads to a 
smaller cut-off value qc,j for an oscillation branch. The approximation may overestimate 
the influence of damping. Hence, results obtained without taking damping into account are 
also discussed. 

The screening of the polar optical phonons is treated according to [9]. 
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5.2. The determination of the scattering angle 

The scattering angle for scattering of electrons at polar optical phonons is usually determined 
by the von Neumann procedure [17]. This method requires knowing the maximum of the 
angular distribution function, P(6'). It is inefficient if there are large regions of 19 where 

holds. P- denotes the maximum of P(6'). The situation is complicated by plasmon- 
phonon coupling. Since a maximum q for the coupled modes (a minimum q for the 
uncoupled phononic mode) introduces a maximum 29 not equal to a (a minimum i? not 
equal to 0), the usual approximation for P,, cannot be made. Instead of numerically 
determining P,,, and bearing in mind that (5.3) holds for large 8, we determine the 
scattering angle in another way. Let A be the total scattering rate for a specific scattering 
process. A random number r between 0 and A is chosen, and the scattering angle is 
determined from 

P ( V )  < Pm.x (5.3) 

a, 
r = Lm,. ~( i?)s in i?  = Q(OJ (5.4) 

with 

P(B) = lk lmS(k,k')kndk'dq 

given analytically in the appendix. 
numerically determined by a searching procedure. First, we set 

Since it is impossible to solve (5.4) for 6's, is 

= (9- - i?d")/2. (5.5) 
If Q(OS) > r ,  we set Om, = Os, else ir,, = 19~ to obtain a better estimate of i?s by (5.5). 
This procedure is repeated until 

d 8  being an appropriate lower limit. In our calculations, a value of 0.5" has been used, 

5.3. The impact of electron scattering at coupled plasmon-phonons on electron transport 

At n = 10l6 cmd3, scattering occurs only due to the lower mode. The scattering rate for 
scattering at the high-energy mode is equal to zero. Figure 11 shows the cut-off wave 
numbers for both modes. The value for the lower mode is lowered by damping. As the 
electron temperature increases and the L and X valleys become occupied with increasing 
field strength, damping becomes more effective, and the cut-off value becomes smaller. This 
results in a mean relative scattering rate, which diminishes with increasing field strength and 
is equal to zero at E = 6 kV cm-', as can be seen from figure 12. Even for E < 6 kV cm-', 
the relative scattering rate is smaller than 0.1%, and the impact of this scattering process on 
the stationary electron velocity can be neglected for n = 10l6 ~ m - ~ .  If plasmon damping 
is neglected and a qc determined from (5.2) is used, the calculated mean electron velocity 
is also not influenced. 

CII-~,  the mean scattering rate for scattering at the low-energy mode is 
equal to zero for all field strengths. Scattering is only caused by the high-energy mode. 
Figure 13 shows the cut-off wave numbers for both modes. The value of the low-energy 
mode is affected by plasmon-phonon damping. In figure 14, the relative scattering rate for 
the high-energy mode is compared with the polar optical phonon scattering rate, which can 
be seen to be much higher. Hence the velocity-field characteristic shown in figure 15 is 
not strongly affected. If damping is neglected, the resulting velocity changes by less than 
IO%, as can be seen in figure 15. 

0- - t9dn < di? 

At n = 
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Figure 14. Relative scattering rates at n = 10l8 ~ m - ~ :  
- , scat(ering of electrons at uncoupled polar optical 
phonons; ---, scattering of elemons at coupled 
plasmon-phonons, upper mode. 

6. Discussion of the results 

0 5 lo 15 20 25 30 
[kvlcml 

Electric Field 

Figure 13. Cut-off wave numbers at n = IOL8 
- , branch 1; - - -, branch 2. 
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Electric Field 

Figure 15. The stationary velociW-field characteristic 
forn = 10" ~ m - ~ :  -. ali discussed effects induded 
without damping; - - -, all discussed included 
with damping; A. all discussed effects neglected. 

Experimental results that can be compared to onr computations are mobility measurements 
and u(E)  characteristics. The mobility is defined here by 

p = au/aE 

and computed for E = 0.2 kV cm-'. It is well known that at low field strength a large 
statistical error of p remains. To reduce this error, 90000 electrons were used to calculate 
mobilities. Measured values can be taken from [18-201. In these publications, measnrements 
of different authors are quoted. 

Experimental and theoretical results can only be compared if the compensation ratio r 
is known. If n, is the concentration of ionized acceptors and nd the concentration of ionized 
donors, r is given by 

r = (na+ nd)/n. 
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In n-GaAs, r # 1. A further difficulty arises at high electron concentrations since scattering 
at neutral impurities cannot necessarily be neglected. Both effects are neglected here, and 
r is generally set to unity. 

The mobility we obtain at 10l6 cm-3 for r = 2 coincides nearly exactly that quoted 
in [ZZ], p = 6.7 x 16 cm2 V-' s-'. We checked that our result does not depend on 
the plasmon cut-off wave number up to qc = 0. The effects considered do not affect the 
mobility at n = 1OI6 CI I -~ ,  and hence they cannot be the reason for any discrepancies 
between experiment and theory. 

At n = 10" the measured mobility taken from [20] is (2.8 f 0.5) x 
IO3 cm2 V-' s-'. Neglecting all effects discussed and setting r = 1, we obtain 
(3.5f0.5) x lo3 cm2 V-' SKI. If undamped plasmons are taken into account, we also obtain 
3.5 x lo3 cm2 V-' s-I. Screening of the polar optical phonons raises the mobility (see 
[ZO]), but this effect is compensated by the additional plasmon scattering process. Inclusion 
of electron-electron collisions lowers the mobility to (3.3 f 0.5) x lo3 cm2 V-' s-' . Th' 1s 
slight lowering of the mobility has also been observed in [ZO]. Finally, the Pauli principle 
raises the mobility to (3.6h0.5) x Id cm2 V-' SKI. As also observed in [20], the theoretical 
mobility at n = lo1* cmm3 exceeds the experimentally observed value. However, plasmon 
interaction cannot be the reason for this discrepancy, and the shortcoming has to be searched 
for elsewhere. 

We note that in [21] theoretical mobilities agree with experimental ones in Si by use of 
a cut-off wave number of 0 for plasmons at n = 10'' The relative influence of the 
plasmon scattering process in Si at n = 1Ol8 and low field strengths may be greater 
than in GaAs since $e plasmon scattering is not partly compensated by screening of polar 
optical phonons. Furthermore, in GaAs the cut-off wave number at n = 1Ol8 cm-j and low 
field strengths is only N 0.78 according to the analysis of the dielectric function. 

At n = IO" ~ m - ~ ,  the theoretical mobility neglecting all effects discussed is 
(3.3 f 0.5) x lo3 cm2 V-' 8. This is higher than that obtained in [ZO], since we 
neglect the Pauli principle even in computing the screening length. Therefore, the 
impact of impurity scattering is underestimated. Taking plasmon-phonon interaction and 
electron-electron interaction into account, we obtain (4.2 f 0.5) x lo3 cm2 V-' s-' and 
(4.0 f 0.5) x IO3 cm2 V-' S-I , respectively. The Pauli principle, however, Iowers the 
mobility drastically to (0.8 i 0.5) x lo3 cm2 V-' s-I . Th' 1s IS ' due to the fact that because 
of forbidden scattering processes in the r valley the L valleys are significantly occupied at 
even very low field stren,gs. Note that the mobility is now closer to the experimentally 
observed one but clearly too low. The observed mobilities according to [20] are in the 
interval (1.5 fO .3 )  x 1 6  cm2 V-' s-'. 

Measured u(E)-curves only exist for materials with high resistivity (about lo6 S2 cm) 
and n << 10l6 cm-j [23]. For higher electron concentrations, measurements are still lacking, 
and a check of our results is not possible at present. 

Finally we compare in figure 15 the velocity-field characteristic for n = 1Ol8 cm-3 
including electron-electron interaction and the exclusion principle with the characteristic 
one obtains by neglecting all these effects. The velocities are changed by less than 10%. 

7. Conclusions 

We performed Monte Carlo calculations for homogeneous GaAs probes including electron- 
electron interactions and the Pauli exclusion principle for electron concentrations of n = 
10l6 and n = 10'' cm-3 at high electric fields. At n = 10l6 ~ m - ~ ,  each of these 
processes can be neglected. For an electron concentration of n = 1Ol8 ~ m - ~ ,  the influence 
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does not exceed 10%. At n = IOl9 C D - ~ ,  a pronounced lowering of the mobility is observed 
caused by the exclusion principle. Remaining discrepancies to experimental mobility values 
show that further work is needed. 
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Appendix. Scattering rate for scattering of electrons at coupled plasmon-phonons 

The scattering probabilities are. given by 
s'. (k, k') = vispg.'(k, k') + WiSP,0.i(k, k') 
(4 (e) (e) 

with vi ,  wi weighting factors, see [SI, 

x G(k,  IC')& E(k') - E(k) - hot . (A.3) 

These expressions are derived in [91. The meaning of the parameters is as follows: V,, 
crystal volume; E,, high-frequency dielectric constant; E , ,  static dielechic constanr m*, 
effective mass of the scattered electron; wP1 plasma frequency; up., polar optical phonon 
frequency; mi, frequency of the coupled oscillation, branch i; qc, cut-off wave number. 

( (+) ) 

G(k ,  k') is the overlap factor [7]: 
G(k,  k') = (aka;. + C& COS 0)' 

with I? the angle between IC and k'. 

and a the non-parabolicity factor. We define 
UL = ([I + aE(k)l/ll-!- Z L Z E ( ~ ) ~ ) " ~  ck = ( a E ( k ) / [ l  + 21xE(k)])'~ 

E'=E+Eoi y = E ( l + a E )  
(-) 

E(I?) = y + y' - 2yy'cos I? ~ ( q , )  = hZq,2/2m*. 
Then 

P(0) = u- 
2'1' e2(m*)'/' ( y  - y')2(y')'/2 ((1 + aE')1/2(1 + a E ) ' / 2  + a ( E ' E ) 1 / 2 ~ ~ ~ I ? ) 2  
831 E3~os,opl (1 + 2aE) E (8) 

1 e(m*)'/2wpo (y')'/' E(+) 
+W- 

4(2)'12 RE& (2 - i) (1 + 2aE) (D(qc) + E(I?)) 

x ((1 +orE')'/Z(l + c y E ) ' / Z + ~ ( E ' E ) ~ I Z C O S ~ ) 2 .  (A.4) 
The minimal (maximal) I? is given by the minimal (maximal) q = Ik - k'l. We define 
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Then 

Finally the integral over P ( 0 )  is given by 

2 
F'In(E(0)) - 2 a F E ( 0 )  

(-4.5) 

Here 

cPl = [ez(m*)1/2/3'2 x 2 1 / 2 j 7 h 3 & ~ ~ , o p ~ ] ( y  - y') ' / ( l+ 2aE)(1 + a E ) ( 1 +  aE')(y)l/' 

cP. = [e2(m*)'/'opo/32 x 21~23rh&~](1/&8 - l / & m ) / ( l + 2 a E ) ( 1  + a E ) ( l  +aE')(y)"' 

F = 2 ( 1 + a E ) ( l + a E ' ) + a ( y + y ' ) .  

&(Os) is used to determine the scattering angle fist,. The total scattering rate is given by 
Q(%tmar). 
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